Warning: Undefined array key "https://nctbsolution.com/maths-wiz-class-8-solutions/" in /home/862143.cloudwaysapps.com/hpawmczmfj/public_html/wp-content/plugins/wpa-seo-auto-linker/wpa-seo-auto-linker.php on line 192
Maths Wiz Class 8 Solutions Chapter 6 Factorisation of Algebraic Expressions
Welcome to NCTB Solutions. Here with this post we are going to help 8th class students for the Solutions of Maths Wiz Class 8 Math Book, Chapter 6, Factorisation of Algebraic Expressions. Here students can easily find step by step solutions of all the problems for Factorisation of Algebraic Expressions, Exercise 6A, 6B, 6C, 6D, 6E, 6F and 6G Also here our mathematics teacher’s are solved all the problems with easily understandable methods with proper guidance so that all the students can understand easily. Here in this post students will get chapter 6 solutions. Here in this post all the solutions are based on ICSE latest Syllabus.
Factorisation of Algebraic Expressions Exercise 6A Solution :
Question no – (1)
Solution :
(a) 4x + 8y = 4 (x + 2y)
(b) 9m – 3 = 3(3m – 1)
(c) 5b2 – 20b = 5b (b – 4)
(d) – 3ax + 6ay = -3a (x + 2y)
(e) 3x2y2 – xy2 = xy2 (3x – 1)
(f) 14a3b – 7a2b2 = 7a2b (2a – b)
(g) – xy – 3x = – x (y + 3)
(h) 8×3 – 28x2 – 4x = 4x (2x2 – 7x – 2)
Question no – (2)
Solution :
(a) 7x + 28 = 7 (x + 4)
(b) 15y – 3 = 3 (5y – 1)
(c) 600x – x2 = x (600 – x)
(d) – 3x – 27 = -3 (x + 9)
(e) 50x5 – 25x4 + 100x3 = 25x3 2x2 – x + 4
(f) – 3y2 – 9y3 = – 3y2 (1 + 3y)
Question no – (3)
Solution :
(a) ax2 + ay
= a(x2 + y)
(b) 4a2 – 2a2c
= 2a2 (2 – c)
(c) 28p3 – 42p2q
= 14p2 (2p – 3q)
(d) – 15p2 – 20pr
= – 5p (3p + 4r)
(e) –m2n – mn2
= – mn (m + n)
(f) 48y5z3 – 64y4z4
= 16y4z3 (3y – 4z)
(g) 21y3 – 14y2 – 7y
= 7y (3y2 – 2y – 1)
(h) 16x3y2 – 20x2y3 – 28x2y2z
= 4x2y2 (4x – 5y – 7z)
Factorisation of Algebraic Expressions Exercise 6B Solution :
Question no – (1)
Solution :
Given, a (f + g) + b(f + g)
∴ a (f + g) + b(f + g)
= (f + g) (a + b)
Question no – (2)
Solution :
Given, x (b – c) – y(b – c)
∴ x (b – c) – y(b – c)
= (b – c) (x – y)
Question no – (3)
Solution :
Given, p2 (x + y) + q2 (x + y)
∴ p2 (x + y) + q2 (x + y)
= (x + y) (p2 + q2)
Question no – (4)
Solution :
Given, 3(6 – y) – y(6 – y)
∴ 3(6 – y) – y(6 – y)
= (6 – y) (3 – y)
Question no – (5)
Solution :
Given, a (10 – x) – (10 – x)
∴ a (10 – x) – (10 – x)
= (10 – x) (a – 1)
Question no – (6)
Solution :
Given, (a – b)2 + 4(a – b)
∴ (a – b)2 + 4(a – b)
= (a – b) (a – b + 4)
Question no – (7)
Solution :
Given, 4(p + q)2 – 8(p + q)
∴ 4(p + q)2 – 8(p + q)
= (p + q) (4p + 4q – 8)
Question no – (8)
Solution :
Given, 7x + 14y + (x + 2y)2
∴ 7x + 14y + (x + 2y)2
= 7(x + 2y) + (x + 2y) (x + 2y)
= (x + 2y) (x + 2y + 7)
Question no – (9)
Solution :
Given, (5y – 3z)2 – 10y + 6z
∴ (5y – 3z)2 – 10y + 6z
= (5y – 3z) (5y – 3z) – 2 (5y – 3z)
= (5y – 3z) (5y – 3z – 2)
Question no – (10)
Solution :
Given, 3x(x – y) + 2y(x – y) + 7(y – x)
∴ 3x(x – y) + 2y(x – y) + 7(y – x)
= 3 (x – y) + 2y(x – y) – 7(x – y)
= (x – y) (3x + 2y – 7)
Question no – (11)
Solution :
Given, 10 + 2y – 5z – zy
∴ 10 + 2y – 5z – zy
= 2(5 + y) – 5z (5 + y)
= (2 – 5z) (5 + y)
Question no – (12)
Solution :
Given, 2pq – 6p + q – 3
∴ 2pq – 6p + q – 3
= 2p (q – 3) + 1 (q – 3)
= (q – 3) (2p + 1)
Factorisation of Algebraic Expressions Exercise 6C Solution :
Question no – (1)
Solution :
Given, ax2 + by2 + bx2 + ay2
∴ ax2 + bx2 + ay2 + by2
= x2 (a + b) + y2 (a + b)
= (a + b) (x2 + y2)
Question no – (2)
Solution :
Given, my + nz + mz + ny
∴ my + mz + ny + nz
= m (y + z) + n (y + z)
= (m + n) (y + z)
Question no – (3)
Solution :
Given, ab – 5c + 5a – bc
∴ ab + 5a – bc – 5c
= a (b + 5) – c (b + 5)
= (b + 5) (a – c)
Question no – (4)
Solution :
Given, x2 + ab – ax – bx
∴ x2 – ax – bx + ab
= x (x – a) – b (x – a)
= (x – a) (x – b)
Question no – (5)
Solution :
Given, ab2 – bc2 – ab + c2
∴ ab2 – ab – bc2 + c2
= ab (b – 1) – c2 (b – 1)
= (ab – c2) (b – 1)
Question no – (6)
Solution :
Given, 2xw – 3 – 6x + w
∴ 2xw + w – 6x – 3
= w (2x + 1) – 3 (2x + 1)
= (2x + 1) (w – 3)
Question no – (7)
Solution :
Given, 54x + 10y – 12xy – 45
∴ 54x – 12xy – 45 + 10y
= 6x (9 – 2y) – 5 (9 – 2y)
= (6x – 5) (9 – 2y)
Question no – (8)
Solution :
Given, m3 + 4m + 5m2 + 20
= m3 + 5m2 + 4m + 20
= m2 (m + 5) + 4 (m + 5)
= (m2 + 4) (m + 5)
Question no – (9)
Solution :
Given, 2axy2 + 10x + 3ay2 + 15
= 2axy2 + 3ay2 + 10x + 15
= ay2 (2x + 3) + 5 (2x + 3)
= (ay2 + 5) (2x + 3)
Factorisation of Algebraic Expressions Exercise 6D Solution :
Question no – (1)
Solution :
Given, a2 + 4ab + 4b2
∴ a2 + 4ab + 4b2
= (a)2 + 2.a.2b + (2b)2
= (a + 2b)2
Question no – (2)
Solution :
Given, 4x2 – 4x + 1
∴ 4x2 – 4x + 1
= (2x)2 – 2.2x.1 + (1)2
= (2x – 1)2
Question no – (3)
Solution :
Given, 36p2 – 60pq + 25q2
∴ 36p2 – 60pq + 25q2
= (6p)2 – 2.6p.5q + (5q)2
= (6p – 5q)2
Question no – (4)
Solution :
Given, x2 – 2xy – y2
= x2 – 2xy – y2
= (x)2 – 2.x.y – (y)2
∴ No, it is not a trinomial square.
Question no – (5)
Solution :
Given, 49y2 – 14y + 1
∴ 49y2 – 14y + 1
= (7y)2 – 2.7y .1 + (1)2
= (7y – 1)2
Question no – (6)
Solution :
Given, 9x2y2 + 6xyz + z2
∴ 9x2y2 + 6xyz + z2
= (3xy)2 + 2.3xy.z + (z)2
= (3xy + z)2
Question no – (7)
Solution :
Given, 4m2 + 24m + 9
= 4m2 + 24m + 9
= (2m)2 + 2.2m.3.2 + (3)2
∴ No, it is not a trinomial square.
Question no – (8)
Solution :
Given, 16b2 – 60by + 25y2
= 16b2 – 60by + 25y2
= (4b)2 – 2.4b.5y.3 + (5y)2
∴ No, it is not a trinomial square.
Question no – (9)
Solution :
Given, 49x4 – 112x2y2 + 64y4
∴ 49x4 – 112x2y2 + 64y4
= (7x2)2 – 2.7x2.8y2 + (8y2)2
= (7x2 – 8y2)2
Question no – (10)
Solution :
Given, 25x2 + 20x + 1
= (5x)2 + 2.5x.2 + 1
∴ No, it is not a trinomial square.
Question no – (11)
Solution :
Given, x2/9y2 – 1/15 + y2/25x2
∴ x2/9y2 – 1/15 + y2/25x2
= (x/3y)2 + 2.x/3y.y/5x + (y/5x)2
= (x/3y + y/5x)2
Question no – (12)
Solution :
Given, a2 + a + 1/4
∴ a2 + a + 1/4
= (a)2 + 2.a.1/2 + (1/2)2
= (a + 1/2)2
Question no – (13)
Solution :
Given, 1 + 18pq + 81p2q2
∴ 1 + 18pq + 81p2q2
= 1 + 2.9pq + (9pq)2
= (1 + 9pq)2
Question no – (14)
Solution :
Given, 4 – 20b + 25b2
∴ 4 – 20b + 25b2
= (2)2 – 2.2.5b + (5b)2
= (2 – 5b)2
Question no – (15)
Solution :
Given, 4/9 x2 + 16/15 xy + 16/25 y2
∴ 4/9 x2 + 16/15 xy + 16/25 y2
= (2/3x)2 + 2.2/3x. 4/5y + (4/5y)2
= (2/3x + 4/5y)2
Factorisation of Algebraic Expressions Exercise 6E Solution :
Question no – (1)
Solution :
(a) Given, y2 – 9
∴ y2 – 9
= (y)2 – (3)2
= (y – 3) (y + 3)
(b) x2 – 25
∴ x2 – 25
= (x)2 – (5)2
= (x – 5) (x + 5)
(c) 9x2 – 4
∴ 9x2 – 4
= (3x)2 – (2)2
= (3x – 2) (3x + 2)
(d) 49x2 – 64
∴ 49x2 – 64
= (7x)2 – (8)2
= (7x – 8) (7x + 8)
(e) -16 + x2
∴ -16 + x2
= (x)2 – (4)2
= (x – 4) (x + 4)
(f) p6 – 36
∴ p6 – 36
= (p3)2 – (6)2
= (p3 – 6) (p3 + 6)
(g) 144x4y2 – z2
∴ 144x4y2 – z2
= (12x2y)2 – (z)2
= (12x2y – z) (12x2y + z)
(h) x6 – y4
∴ x6 – y4
= (x3)2 – (y2)2
= (x3 – y2) (x3 +y2)
(i) a2/9 – b2/16
∴ a2/9 – b2/16
= (a/3)2 – (b/4)2
= (a/3 – b/4) (a/3 + b/4)
(j) Given, 121/9m2 – n2
∴ 121/9m2 – n2
= (11/3m)2 – (n)2
= (11/3m + n) (11/3 m – n)
(k) Given, 25/36 x8 – y4
∴ 25/36 x8 – y4
= (5/6 x4)2 – (y2)2
= (5/6 x4 – y2) (5/6 x4 + y2)
(l) Given, – 25 + 1/64b2
∴ – 25 + 1/64b2
= (1/8b)2 – (5)2
= (b/8 – 5) (b/8 + 5)
Question no – (2)
Solution :
(a) x2 + 8x + 16 – y2
∴ x2 + 8x + 16 – y2
= x2 + 2.x.4 + (4)2 – y2
= (x + 4)2 – y2
= (x + 4 + y) (x + 4 – y)
(b) (a – b)2 – x2
∴ (a – b)2 – x2
= (a – b + x) (a – b – x)
(c) b2 – 6b + 9 – c2
∴ b2 – 6b + 9 – c2
= (b)2 – 2.b.3 + (3)2 – c2
= (b – 3)2 – c2
= (b – 3 – c) (b – 3 + c)
(d) y2 – b2 – 8b – 16
∴ y2 – b2 – 8b – 16
= y2 – {b2 + 2.4.b + (4)2}
= y2 – (b + 4)2
= (y – b – 4) (y + b + 4)
(e) x2 – c2 – 4 + 4c
∴ x2 – c2 – 4 + 4c
= x2 – (c2 – 4c + 4)
= x2 – (c2 – 2.c.2 + (2)2)
= x2 – (c – 2)2
= (x – c + 2) (x + c – 2)
(f) a2 – b2 – 10bc – 25c2
∴ a2 – b2 – 10bc – 25c2
= a2 – {b2 + 2.b.5c + (5c)2}
= a2 – (b + 5c)2
= (a – b – 5c) (a + b + 5c)
Question no – (3)
Solution :
(a) 5p2 – 5
∴ 5p2 – 5
= 5 (p2 – 1)
= 5 (p – 1) (p + 1)
(b) 8a2 – 32
∴ 8a2 – 32
= 8{a2 – 4}
= 8 (a2 – b2)
= 8 (a – 2) (a + 2)
(c) 16 – 100x2y2
∴ 16 – 100x2y2
= (4)2 – (10xy)2
= (4 – 10xy) (4 + 10xy)
(d) 2a3b4 – 98ab2
∴ 2a3b4 – 98ab2
= 2ab2 (a2b2 – 49)
= 2ab2 {(ab)2 – (7)2}
= 2ab2 (ab – 7) (ab + 7)
(e) c2 – 6c + 9 – y2
∴ c2 – 6c + 9 – y2
= c2 – 2.c.3 + (3)2 – y2
= (c – 3)2 – y2
= (c – 3 – y) (c – 3 + y)
(f) x3 + x2 – 4x – 4
∴ x3 + x2 – 4x – 4
= x2 (x + 1) – 4 (x + 1)
= (x2 – 4) (x + 1)
= (x – 2) (x + 2) (x + 1)
(g) m3 – mn2 – m2 + n2
∴ m3 – mn2 – m2 + n2
= m (m2 – n2) – (m2 – n2)
= (m – 1) (m2 – n2)
= (m – 1) (m – n) (m + n)
Factorisation of Algebraic Expressions Exercise 6F Solution :
Question no – (1)
Solution :
Given, y2 + 4y + 3
∴ y2 + 4y + 3
= y2 + 3y + y + 3
= y ( y + 3) + 1(y + 3)
= (y + 1) (y + 3)
Question no – (2)
Solution :
Given, a2 + 12a + 27
∴ a2 + 12a + 27
= a2 + 9a + 3a + 27
= a (a + 9) + 3 (a + 9)
= (a + 3) (a + 9)
Question no – (3)
Solution :
Given, x2 + 12x + 32
∴ x2 + 12x + 32
= x2 + 8x + 4x + 32
= x (x + 8) + 4 (x + 8)
= (x + 4) (x + 8)
Question no – (4)
Solution :
Given, p2 – 11p + 24
∴ p2 – 11p + 24
= p2 – 8p – 3p + 24
= p (p – 8) – 3 (p – 8)
= (p – 8) (p – 3)
Question no – (5)
Solution :
Given, x2 – 15x + 44
∴ x2 – 15x + 44
= x2 – 11x – 4x + 44
= x (x – 11) – 4 (x – 11)
= (x – 4) (x – 11)
Question no – (6)
Solution :
Given, m2 – 15m + 56
∴ m2 – 15m + 56
= m2 – 7m – 8m + 56
= m (m – 7) – 8 (m – 7)
= (m – 8) (m – 7)
Question no – (7)
Solution :
Given, x2 + x – 30
∴ x2 + x – 30
= x2 + 6x – 5x – 30
= x (x + 6) – 5(x + 6)
= (x – 5) (x + 6)
Question no – (8)
Solution :
Given, a2 – 3a – 18
∴ a2 – 3a – 18
= a2 – 6a + 3a – 18
= a (a – 6) + 3 (a – 6)
= (a + 3) (a – 6)
Question no – (9)
Solution :
Given, b2 – b – 56
∴ b2 – b – 56
= b2 – 8b + 7b – 56
= b (b – 8) + 7 (b – 8)
= (b – 8) (b + 7)
Question no – (10)
Solution :
Given, t2 – 20t – 125
∴ t2 – 20t – 125
= t2 – 25t + 5t – 125
= t (t – 25) + 5 (t – 25)
= (t – 25) (t + 5)
Question no – (11)
Solution :
Given, u2 – 7u – 30
∴ u2 – 7u – 30
= u2 – 10u + 3u – 30
= u (u – 10) + 3 (u – 10)
= (u + 3) (u – 10)
Question no – (12)
Solution :
Given, x2 – 43x + 42
∴ x2 – 43x + 42
= x2 – 42x – x + 42
= x (x – 42) – 1(x – 42)
= (x – 1) (x – 42)
Question no – (13)
Solution :
Given, k2 + 12k – 160
∴ k2 + 12k – 160
= k2 + 20k – 8k – 160
= k (k + 20) – 8 (k + 20)
= (k + 20) (k – 8)
Question no – (14)
Solution :
Given, x2 + 5x – 24
∴ x2 + 5x – 24
= x2 + 8x – 3x – 24
= x (x + 8) – 3 (x + 8)
= (x – 3) (x + 8)
Question no – (15)
Solution :
Given, c2 – 19c + 78
∴ c2 – 19c + 78
= c2 – 13c – 6c + 78
= c (c – 13) – 6 (c – 13)
= (c – 13) (c – 6)
Question no – (16)
Solution :
Given, y2 + 2y – 48
∴ y2 + 2y – 48
= y2 + 8y – 6y – 48
= y (y + 8) – 6 (y + 8)
= (y – 6) (y + 8)
Question no – (17)
Solution :
Given, a2 + 9a – 36
∴ a2 + 9a – 36
= a2 + 12a – 3a – 36
= a (a + 12) – 3 (a + 12)
= (a + 12) (a – 3)
Question no – (18)
Solution :
Given, m2 – 3m – 40
∴ m2 – 3m – 40
= m2 – 8m + 5m – 40
= m (m – 8) + 5 (m – 8)
= (m + 5) ( m – 8)
Question no – (19)
Solution :
Given, t2 – 17t – 84
∴ t2 – 17t – 84
= t2 – 21t + 4t – 84
= t (t – 21) + 4 (t – 21)
= (t + 4) (t – 21)
Question no – (20)
Solution :
Given, x2 – 13x – 68
∴ x2 – 13x – 68
= x2 – 17x + 4x – 68
= x (x – 17) + 4 (x – 17)
= (x + 4) (x – 17)
Question no – (21)
Solution :
Given, u2 + 6u – 112
∴ u2 + 6u – 112
= u2 + 14u – 8u – 112
= u (u + 14) – 8 (u + 14)
= (u – 8) (u + 14)
Factorisation of Algebraic Expressions Exercise 6G Solution :
Question no – (1)
Solution :
Given, 2x2 + 11x + 15
∴ 2x2 + 11x + 15
= 2x2 + 6x + 5x + 15
= 2x (x + 3) + 5 (x + 3)
= (2x + 5) (x + 3)
Question no -(2)
Solution :
Given, 6x2 + 17x + 5
∴ 6x2 + 17x + 5
= 6x2 + 15x + 2x + 5
= 3x (2x + 5) + 1 (2x + 5)
= (3x + 1) (2x + 5)
Question no – (3)
Solution :
3x2 + 11x + 5
∴ 3x2 + 11x + 5
= 3x2 + 6x + 5x + 10
= 3x (x + 2) + 5 (x + 2)
= (3x + 5) (x + 2)
Question no – (4)
Solution :
5b2 + 16b + 3
∴ 5b2 + 16b + 3
= 5b2 + 15b + b + 3
= 5b (b + 3) + 1 (b + 3)
= (5b + 1) (b + 3)
Question no – (5)
Solution :
3x2 + 13x + 12
∴ 3x2 + 13x + 12
= 3x2 + 9x + 4x + 12
= 3x (x + 3) + 4 (x + 3)
= (3x + 4) (x + 3)
Question no – (6)
Solution :
2x2 + 17x + 21
∴ 2x2 + 17x + 21
= 2x2 + 14x + 3x + 21
= 2x (x + 7) + 3 (x + 7)
= (2x + 3) (x + 7)
Question no – (7)
Solution :
15y2 + 16y + 4
∴ 15y2 + 16y + 4
= 15y2 + 10y + 6y + 4
= 5y (3y + 2) + 2 (3y + 2)
= (5y + 2) (3y + 2)
Question no – (8)
Solution :
6x2 + 17x – 14
∴ 6x2 + 17x – 14
= 6x2 + 21x – 4x – 14
= 3x (2x – 7) – 2 (2x – 7)
= (3x – 2) (2x – 7)
Question no – (9)
Solution :
4m2 + 7m – 2
∴ 4m2 + 7m – 2
= 4m2 + 8m – m – 2
= 4m (m + 2) – 1 (m + 2)
= (4m – 1) (m + 2)
Question no – (10)
Solution :
2x2 – 7x – 15
∴ 2x2 – 7x – 15
= 2x2 – 10x + 3x – 15
= 2x (x – 5) + 3 (x – 5)
= (2x + 3) (x – 5)
Question no – (11)
Solution :
5x2 – 16x + 3
∴ 5x2 – 16x + 3
= 5x2 – 15x – x + 3
= 5x (x – 3) – (x – 3)
= (5x – 1) (x – 3)
Question no – (12)
Solution :
6x2 – 17x + 12
∴ 6x2 – 17x + 12
= 6x2 – 9x – 8x + 12
= 3x (2x – 3) – 4 (2x – 3)
= (3x – 4) (2x – 3)
Question no – (13)
Solution :
5x2 + 9x – 18
∴ 5x2 + 9x – 18
= 5x2 + 15x – 6x – 18
= 5x (x + 3) – 6 (x + 3)
= (x + 3) (5x – 6)
Question no – (14)
Solution :
3x2 – x – 4
∴ 3x2 – x – 4
= 3x2 – 4x + 3x – 4
= x (3x – 4) + 1 (3x – 4)
= (x + 1) (3x – 4)
Question no – (15)
Solution :
8a2 + 18a – 5
∴ 8a2 + 18a – 5
= 8a2 + 20a – 2a – 5
= 4a (2a + 5) + 1 (2a + 5)
= (4a + 1) (2a + 5)
Question no – (16)
Solution :
8x2 – 73x + 9
∴ 8x2 – 73x + 9
= 8x2 – 72x – x + 9
= 8x (x – 9) – 1 (x – 9)
= (8x – 1) (x – 9)
Question no – (17)
Solution :
-2x2 + 5x + 42
∴ -2x2 + 5x + 42
= – 2x2 + 12x – 7x + 42
= – 2x (x – 6) – 7 (x – 6)
= (x – 6) (- 2x – 7)
Question no – (18)
Solution :
-12x2 – 35x – 18
∴ – 12x2 – 35x – 18
= -12x2 – 27x – 8x – 18
= – {12x2 + 27x + 8x + 18}
= – {3x (4x + 9) + 2 (4x + 9)}
= – (3x + 2) (4x + 9)
Question no – (19)
Solution :
Given, – 2x2 – 15x – 7
∴ – 2x2 – 15x – 7
= – 2x2 – 14x – x – 7
= – 2x (x – 7) – 1 (x – 7)
= – (2x + 1) (x – 7)
Question no – (20)
Solution :
30t2 + 39t – 9
∴ 30t2 + 39t – 9
= 30t2 + 15t – 6t – 9
= 15t (2t + 3) – 3 (2t + 3)
= (15t – 3) (2t + 3)
Question no – (21)
Solution :
15x4 – 10x3 – 25x2
∴ 15x4 – 10x3 – 25x2
= 15x4 – 25x3 + 15x3 – 25x2
= 5x3 (3x – 5) + 5x2 (3x – 5)
= (5x3 + 5x2) (3x – 5)
= 5 (x3 + x2) (3x – 5)
Question no – (22)
Solution :
14x3 – 57x2y – 27xy2
∴ 14x3 – 57x2y – 27xy2
= 14x3 – 63x2y + 6x2y – 27xy2
= 7x2 (2x – 9y) + 3xy (2x – 9y)
= (2x – 9y) (7x2 + 3xy)
Question no – (23)
Solution :
– 3x3 + 16x2 – 16x
∴ – 3x3 + 16x2 – 16x
= – 3x2 + 12x2 + 4x2 – 16x
= – 3x2 (x – 4) + 4x (x – 4)
= (4x – 3x2) (x – 4)
Question no – (24)
Solution :
– 4x4 – 4x3 + 15x2
∴ – 4x4 – 4x3 + 15x2
= – 4x4 – 10x3 + 6x3 + 15x2
= – 2x3 (2x + 5) + 3x2 (2x + 5)
= (3x2 – 2x3) (2x + 5)
Question no – (25)
Solution :
56x3 + 15x2 – 56x
∴ 56x3 + 15x2 – 56x
= 56x3 + (64 – 49) x2 – 56x
= 56x3 + 64x2 – 49x2 – 56x
= 8x2(7x + 8) – 7x (7x + 8)
= (8x2 – 7x) (7x + 8)
Question no – (26)
Solution :
32x4 + 12x3y – 5x2y2
∴ 32x4 + 12x3y – 5x2y2
= 32x4 + 20x3y – 8x3y – 5x2y
= 4x3 (8x + 5y) – x2y (8x + 5y)
= (4x3 – x2y) (8x + 5y)
Question no – (27)
Solution :
30m2 – 78mn + 36n2
∴ 30m2 – 78mn + 36n2
= 30m2 – 60mn – 18mn + 36n2
= 30m (m – 2n) – 18n (m – 2n)
= (30m – 18n) (m – 2n)
Next Chapter Solution :
👉 Chapter 7 👈